Retinal Photography Screening Programs to Prevent Vision Loss from Diabetic Retinopathy in Rural and Urban Australia: A Review

Robyn J. Tapp, Jean Svoboda, Bronwyn Fredericks, A. Jonathan Jackson & Hugh R. Taylor

To cite this article: Robyn J. Tapp, Jean Svoboda, Bronwyn Fredericks, A. Jonathan Jackson & Hugh R. Taylor (2015) Retinal Photography Screening Programs to Prevent Vision Loss from Diabetic Retinopathy in Rural and Urban Australia: A Review, Ophthalmic Epidemiology, 22:1, 52-59, DOI: 10.3109/09286586.2014.988875

To link to this article: http://dx.doi.org/10.3109/09286586.2014.988875

Published online: 12 Dec 2014.

Submit your article to this journal

Article views: 245

View related articles

View Crossmark data
Retinal Photography Screening Programs to Prevent Vision Loss from Diabetic Retinopathy in Rural and Urban Australia: A Review

Robyn J. Tapp¹,², Jean Svoboda¹, Bronwyn Fredericks³, A. Jonathan Jackson²,⁴,⁵, and Hugh R. Taylor¹

¹Indigenous Eye Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia, ²Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia, ³Office of Indigenous Engagement, Central Queensland University, Rockhampton, Australia, ⁴Australian College of Optometry, National Vision Research Institute, Melbourne, Australia, and ⁵Royal Group of Hospitals, Belfast, Northern Ireland

ABSTRACT

Purpose: This review assessed the effectiveness of diabetic retinopathy (DR) screening programs, using retinal photography in Australian urban and rural settings, and considered implications for public health strategy and policy.

Methods: An electronic search of MEDLINE, PubMed, and Embase for studies published between 1 January 1996 and the 30 June 2013 was undertaken. Key search terms were “diabetic retinopathy,” “screening,” “retinal photography” and “Australia.”

Results: Twelve peer-reviewed publications were identified. The 14 DR screening programs identified from the 12 publications were successfully undertaken in urban, rural and remote communities across Australia. Locations included a pathology collection center, and Indigenous primary health care and Aboriginal community controlled organizations. Each intervention using retinal photography was highly effective at increasing the number of people who underwent screening for DR. The review identified that prior to commencement of the screening programs a median of 48% (range 16–85%) of those screened had not undergone a retinal examination within the recommended time frame (every year for Indigenous people and every 2 years for non-Indigenous people in Australia). A median of 16% (range 0–45%) of study participants had evidence of DR.

Conclusions: This review has shown there have been many pilot and demonstration projects in rural and urban Australia that confirm the effectiveness of retinal photography-based screening for DR.

Keywords: Australia, diabetic retinopathy, retinal photography, rural and urban

INTRODUCTION

Vision loss and blindness from diabetic retinopathy (DR) are almost entirely preventable.¹ The international community through the establishment of Vision 2020 aim to eliminate avoidable blindness worldwide. Screening for DR has been shown to not only reduce the number of people who develop vision loss and blindness, but also to be very cost effective.² The costs of providing preventative eye care are much lower than the costs associated with ongoing support and rehabilitation required due to vision loss and blindness.² In Australia, each $1 spent on eye care yields a $5 return.²

Despite the literature highlighting the effectiveness of early detection and treatment of DR,
population-based studies in Australia and internationally have shown that only approximately half of those with diabetes undergo regular screening for DR.\(^3\) The National Health and Medical Research Council (NHMRC) of Australia guidelines recommend that non-Indigenous people undergo an eye examination at diagnosis and biannually thereafter and at diagnosis and annually for Indigenous people with diabetes.\(^4\) DR screening within the recommended timeframe for Indigenous Australians is only 20%.\(^5\)

The incidence of diabetes is increasing throughout the world. Although good glycemic, blood pressure and lipid control reduces the incidence of DR, all people with diabetes are at risk of developing DR. This review assessed the effectiveness of DR screening programs using retinal photography, and assessed the education, training and development of resources and equipment related to DR screening, in Australian urban and rural settings, and considered implications for public health strategy and policy.

MATERIALS AND METHODS

An electronic search of MEDLINE, PubMed, and Embase for studies published between 1 January 1996 and 30 June 2013 was undertaken. Studies that employed a screening program for DR using retinal photography in Australia were included. There was no restriction on sample size or duration of the intervention. Key search terms used were “diabetic retinopathy,” “screening,” “retinal photography” and “Australia.” In addition, a search of program documents developed by national organizations in Australia was performed, using the key search terms above and corresponded with key stakeholders known to have worked in the area. We further searched the reference lists of the main papers for additional publications of interest. The article search and selection process are shown in Figure 1. Each full-text paper was examined for eligibility and all relevant information extracted (including study location, sample size, recruitment strategy, response rates, type of retinal camera, intervention method and effectiveness of the intervention). The final unit of measurement was “projects” (the series of projects undertaken in Western Australia were not all individually published, but rather collated in one publication). Inclusion of published projects was determined by consensus between authors. Programs assessing education, training, resource development and equipment related to screening for DR identified from the literature search were also extracted. The term effectiveness in this review refers to the ability of the screening programs to identify those with diabetes who had not undergone an eye examination within the recommended time frame.

FIGURE 1. Literature search strategy to identify projects assessing the effectiveness of diabetic retinopathy screening programs in Australia.

© 2014 Informa Healthcare USA, Inc.
RESULTS

The search identified 57 peer-reviewed papers. After review of titles and abstracts, 46 published articles were excluded, on the basis of the titles and abstracts not fulfilling the inclusion criteria. Eleven published articles were included in this review. A search of program documents developed by national organizations in Australia identified an additional project, and a further five published articles were identified through examination of the reference lists. A total of 17 publications underwent a full review. Of these, four were excluded as they were population-based studies assessing prevalence or incidence of DR or were non-intervention studies and one study had yet to commence, providing a total of 12 publications for review. The main findings of the 14 projects, identified in the 12 publications are shown in Table 1. Findings are divided into three sections: (1) sample characteristics, (2) intervention program characteristics, and (3) effectiveness of the programs, including the percentage of subjects included who had not been screened in the recommended time frame, number of new cases of DR detected and number of DR cases receiving appropriate care after screening. The second non-extensive search identified 12 projects assessing education, training and development of resources and equipment related to DR screening in Australia.

Sample Characteristics

The review identified 14 projects in Australia, assessing screening programs for DR. The projects were undertaken in primary health care and community settings with four studies using telemedicine (Table 1). Sample sizes ranged from 10–1589 participants with an age range of 6–100 years. Of the articles, only five stated duration of diabetes, which ranged from 1–61 years. The projects were undertaken in a range of setting including urban populations,6-11 rural and remote communities3,7,8,12-14 and regional areas.6,8,15 Locations included a pathology collection center,10 Indigenous primary health care,9 general practice,8,11 prison,12 mobile unit setup in the community,5,6,7,12,14,16 Aboriginal community controlled organizations12,13 and telemedicine.15 Each study used retinal photography.

Intervention Program Characteristics

The studies undertook a number of approaches to recruit participants for DR screening. For example, the study by Larizza and colleagues recruited participants from a pathology collection center.10 Participants were included if they met the eligibility criteria type 1 or type 2 diabetes, spoke English, and did not undertake biannual DR screening. A number of studies opportunistically recruited participants, attending general practice for their annual cycle of care visit.9,11,14 One study undertook an audit of electronic participant records.15 Another approach taken was to recruit through pediatric diabetes clinics.15 A population-based study selected all residents with diabetes mellitus residing in particular areas defined by postal codes. Recruitment strategies included contact with general practitioners, printed media, radio broadcasts, contacting migrant resource centers and presentations to senior citizen groups.5,6,7

Effectiveness of Interventions

The review identified that prior to commencement of the screening programs a median of 48% (range 16–85%) of those screened had not undergone a retinal examination within the recommended time frame (2-yearly for non-Indigenous people and yearly for Indigenous people). A median of 16% (range 0–45%) of study participants had evidence of DR. Limited data were available on care received after diagnosis of DR through the screening programs. The three studies that did record this detail varied greatly in the percentage receiving follow-up care (33–93%).

Coverage of screening varied between health services within a region (from 12–65%).14 The studies showed that when a screening program was offered, patient acceptance rates increased. For example, DR screening in Indigenous primary care increased 6-fold with the introduction of a DR screening program,9 and in a study by Lee and co-workers, where none of the study participants had previously accessed eye care services on a regular basis, 87% did so after attending a DR screening program.7 Screening for DR at a pathology collection service showed that 34% had not undergone retinopathy screening in the recommended time frame, but when offered screening 94% accepted.10 In the mobile, community-based screening program, 652 people who had not undergone previous DR screening in the recommended time frame, agreed to, and took part in the baseline screening.15 Two years after baseline screening, 87% of participants returned to the screening, or reported that they had a subsequent eye examination. None of the studies reported on the number of cases receiving appropriate care after screening.

Educational Activities, Training and the Development of Resources related to DR Screening

Patient Education and DR Awareness

Table 2 provides a summary of Australian projects assessing education, training and the development of
TABLE 1. Summary of Australian projects assessing effectiveness of diabetic retinopathy (DR) screening programs.

<table>
<thead>
<tr>
<th>Project</th>
<th>Location</th>
<th>Retinal camera</th>
<th>Participants, n</th>
<th>Not screened for DR prior to study, %</th>
<th>DR diagnosed, %</th>
<th>Care after DR diagnosis, %</th>
<th>Time frame</th>
<th>Key study outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile DR screening16</td>
<td>South Australia</td>
<td>–</td>
<td>47</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1996</td>
<td>Of 47 subjects who attended, 77% had interpretable images.</td>
</tr>
<tr>
<td>Community DR screening7</td>
<td>Victoria</td>
<td>Non-mydriatic retinal camera</td>
<td>543</td>
<td>100(^{7})</td>
<td>16</td>
<td>87</td>
<td>1996–2000</td>
<td>None of the participants in the study had previously accessed eye care services on a regular basis, 87% did so after attending screening.</td>
</tr>
<tr>
<td>DR screening in rural Victoria3</td>
<td>Victoria</td>
<td>Canon CR5-45NM</td>
<td>1177</td>
<td>48</td>
<td>18</td>
<td>–</td>
<td>1998</td>
<td>48% of those who attended the service could not recall a dilated fundus examination in the past 2 years.</td>
</tr>
<tr>
<td>Eye Health Coordinators Project12</td>
<td>Across 5 regions of Western Australia</td>
<td>Canon CR5 and CR6-45NM</td>
<td>1498</td>
<td>–</td>
<td>17</td>
<td>–</td>
<td>1998 to date</td>
<td>The state-wide screening program was implemented in 2004. 58% of those with known diabetes were regularly screened, surpassing programs in less remote areas.</td>
</tr>
<tr>
<td>Regional DR screening program13</td>
<td>Kimberley Region, Western Australia</td>
<td>Canon CR4-UAF</td>
<td>1589</td>
<td>84 (Indigenous, <9 months(^{6})), 16 (non-Indigenous, 9–29 months(^{6}))</td>
<td>21</td>
<td>11</td>
<td>1999–2004</td>
<td>Screening for DR by Aboriginal health workers can be successfully sustained with regional support.</td>
</tr>
<tr>
<td>DR screening in the Kimberley14</td>
<td>Kimberley Region, Western Australia</td>
<td>Canon CR5-45</td>
<td>744</td>
<td>–</td>
<td>–</td>
<td>33 within 4 months</td>
<td>2000–2001</td>
<td>DR screening in remote Australia is comparable to, or higher than, other urban or rural populations.</td>
</tr>
</tbody>
</table>

(continued)
TABLE 1. Continued

<table>
<thead>
<tr>
<th>Project</th>
<th>Location</th>
<th>Retinal camera</th>
<th>Participants, n</th>
<th>Not screened for DR prior to study, %</th>
<th>DR diagnosed, %</th>
<th>Care after DR diagnosis, %</th>
<th>Time frame</th>
<th>Key study outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prison DR screening: telemedicine</td>
<td>Western Australia</td>
<td>Retinal camera</td>
<td>10</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>2001</td>
<td>Telemedicine DR screening of inmates reduced travel time and was deemed successful.</td>
</tr>
<tr>
<td>Telepediatrics: DR screening</td>
<td>Regional hospitals, Queensland</td>
<td>Handy NM-200, Nidek, Japan</td>
<td>83</td>
<td>35</td>
<td>1.2</td>
<td>–</td>
<td>2004</td>
<td>Study demonstrated feasibility of a screening service for DR using a portable digital retinal camera.</td>
</tr>
<tr>
<td>DR screening: telemedicine</td>
<td>Gascoyne, Western Australia</td>
<td>Canon CR6-45NM</td>
<td>43</td>
<td>–</td>
<td>45</td>
<td>–</td>
<td>2004</td>
<td>36% of patients required follow-up, 3% had treatment at the remote site and 3% were transferred to Perth.</td>
</tr>
<tr>
<td>DR screening: Pilbara Western Desert</td>
<td>Pilbara, Western Australia</td>
<td>Canon CR6-45NM</td>
<td>77</td>
<td>–</td>
<td>16</td>
<td>–</td>
<td>2005–2006</td>
<td>15.6% of those presenting for DR screening had DR; Outlined technical and practical difficulties.</td>
</tr>
<tr>
<td>Pilot DR screening: general practice</td>
<td>Queensland</td>
<td>Canon CR-1 NM</td>
<td>114</td>
<td>–</td>
<td>12</td>
<td>–</td>
<td>2007–2008</td>
<td>General practice-based DR screening was feasible and acceptable, but photographic quality was an issue.</td>
</tr>
<tr>
<td>DR screening: Indigenous primary care</td>
<td>Inala, Queensland</td>
<td>Canon CR-Dgi</td>
<td>132</td>
<td>85</td>
<td>30</td>
<td>93</td>
<td>2007–2009</td>
<td>Appropriate screening and ophthalmic follow-up increased 6-fold, following the introduction of the retinal camera.</td>
</tr>
<tr>
<td>DR screening: pathology services</td>
<td>Melbourne, Victoria</td>
<td>Non-mydriatic retinal camera</td>
<td>93</td>
<td>–</td>
<td>17</td>
<td>–</td>
<td>2009–2010</td>
<td>Of 289 patients with diabetes who came through the service, 34.3% had not had recommended DR screening; 93.9% (n = 93) of those accepted a screening service. Median photography time was 6 minutes.</td>
</tr>
</tbody>
</table>

–, no data. aTime frame to retinal screening
resources and equipment related to screening for DR. The search identified 12 projects focused on aspects of screening for DR. The Victorian Retinopathy Screening Development Project, identified a lack of awareness of the role optometrists can play in DR screening, and after an awareness campaign, knowledge increased among general practitioners on the role optometrists can perform.17

Table 2. Summary of Australian projects assessing education, training and development of resources and equipment related to screening for diabetic retinopathy (DR). NHMRC, National Health and Medical Research Council.

<table>
<thead>
<tr>
<th>Project</th>
<th>Location</th>
<th>Time frame</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile DR screening approaches: The Victorian Retinopathy Screening Development Project17</td>
<td>Victoria</td>
<td>1998–2001</td>
<td>Developed a suitable approach to mobile screening for rural areas.</td>
</tr>
<tr>
<td>Development of a small retinal-screening device20</td>
<td>Western Australia</td>
<td>2001–2007</td>
<td>Successfully developed a low-cost, small DR screening device.</td>
</tr>
<tr>
<td>Pilot to assess the impact of DR training on general practitioner practice18</td>
<td>Queensland</td>
<td>2001</td>
<td>24% of general practitioners met the NHMRC criteria prior to training and 94% following a brief training intervention.</td>
</tr>
<tr>
<td>National framework to prevent avoidable blindness (DR, AU$4 million)31</td>
<td>National</td>
<td>2005–2008</td>
<td>The 2008 report highlights the many projects and progress made by each.</td>
</tr>
<tr>
<td>Ophthalmic nurse-led DR clinic32</td>
<td>South Australia</td>
<td>2006</td>
<td>Excellent concordance between nurse practitioners and ophthalmologists was achieved.</td>
</tr>
<tr>
<td>Tele-health using EyeScan for DR screening33</td>
<td>Western Australia</td>
<td>2011</td>
<td>–</td>
</tr>
<tr>
<td>Video-based imaging for DR screening34</td>
<td>Western Australia</td>
<td>2012</td>
<td>Retinal video recording at different compression levels was an effective DR screening technique.</td>
</tr>
<tr>
<td>Evaluation of DR education resources35</td>
<td>Western Australia</td>
<td>2012–2015</td>
<td>–</td>
</tr>
<tr>
<td>Raise awareness of diabetes and DR36</td>
<td>Victoria</td>
<td>2012</td>
<td>–</td>
</tr>
<tr>
<td>Novel device for DR screening37</td>
<td>Western Australia</td>
<td>2012</td>
<td>EyeScan required minimal training and had excellent diagnostic accuracy.</td>
</tr>
<tr>
<td>Tele-ophthalmic eye screening and treatment program for DR21</td>
<td>Dubbo, New South Wales</td>
<td>–</td>
<td>Program provides tele-ophthalmic eye screening and treatment for DR.</td>
</tr>
<tr>
<td>Project to train an Aboriginal health worker in DR screening38</td>
<td>Katherine, Northern Territory</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Training of Non-opthalmologist Health Care Providers and their Roles in DR Screening
Short training programs improved the ability of health workers to screen for DR.18 Community awareness campaigns increased knowledge and participation in DR screening programs.19

Screening Tools/Devices, Venues and Referral Channels
Portable equipment that is both cheap and easy to use has been successfully made in Australia.20 Telemedicine has been shown to provide a cost effective, accessible DR screening option for rural and remote populations.19,21

DISCUSSION
This review has shown that over the past 17 years research studies designed to determine the effectiveness of retinal photography-based DR screening programs in Australia have been highly effective. The introduction of retinal photography-based DR screening programs would dramatically increase participation rates and therefore reduce the incidence of blindness. Retinal photography is highly cost-effective.22 Establishment of appropriate pathways of care for those requiring treatment and notification for future DR screening cycles would be essential.

The present review identified 14 projects (from 12 publications) undertaken in Australia, which all showed the positive impact of retinal photography in screening for DR. Studies assessing other aspects related to DR screening in Australia have all shown positive results. From the earliest studies undertaken in the mid-1990s until the most recent study published in 2013, a consistent finding has been the identification of patients who had not undergone an
eye examination in the recommended time frame to be screened for DR, demonstrating the effectiveness of retinal photography-based DR screening programs to augment current eye care services. This finding was observed in studies undertaken in urban populations, rural and remote communities, and regional areas in Australia. This finding is not surprising and supports the literature internationally that has shown the effectiveness of DR screening programs.

There are currently seven funded projects underway in Australia to assess the effectiveness of retinal photography in screening for DR that we are aware of. In addition, during the late 1990s and 2000s substantial funding was provided (in Australia) to assess retinal photography screening for DR as a result of the National Diabetes Strategy and Implementation Plan and the National Framework for Action to Promote Eye Health and Prevent Avoidable Blindness and Vision Loss. For example, funding of AUD$13.8 million over 4 years was allocated in the 2006 Federal Budget for a range of initiatives to promote eye health and strengthen eye health service delivery nationally.

Provision of a DR screening program does not necessarily guarantee that it will be used. However, several countries have well-established DR screening programs that have been highly effective. Iceland was the first country to initiate systematic screening for DR (in 1980). The prevalence of blindness within the population with diabetes decreased from 2.4 to 0.5% over the first 14 years of the program. Since 1990, a program has been implemented in Stockholm County (Sweden) for the early diagnosis of DR, which showed over 5 years the average annual incidence of blindness reduced by 47%. Annual diabetes eye screening has been implemented in England and Wales since 2008. As part of the National Health Service Diabetic Eye Screening Program, all individuals aged 12 years and older who are diagnosed with diabetes in primary care are invited to participate in annual screening for DR. In 2011–2012, 81% of people with diagnosed diabetes who were invited to be screened attended. A recent publication by Liew and co-authors has for the first time in almost 5 decades shown that DR/maculopathy is no longer the leading cause of blindness in working age adults in England and Wales, and suggested this may relate to the introduction of nation-wide public health measures. In Ireland, a national DR screening program is just being rolled out. In France, the OPHDIAT network was created in 2004 with the aim of improving screening for DR. In total, 38,596 patients were screened between June 2004 and December 2009. Of these, 14.7% were referred for advanced stages of retinopathy or concomitant eye diseases (1.9%).

Given the repeated success of DR screening programs using retinal photography overseas, the effectiveness of programs in Australia and the recommendation from the NHMRC around regular eye screening for DR, it seems important that support for sustainable retinal photography-based DR screening programs is examined. The Australian health care system is a hybrid system that is financed by public and private sources that operate in parallel. Public funding for hospitals is provided at a state level, whereas the national health service (Medicare) is run by the Commonwealth Government of Australia and provides funding for medical and primary care and for optometry services within a private practice model. Medicare provides universal health insurance, although many people also have additional private health insurance.

This review has some limitations. Electronic records were only beginning to be put in place during the mid-1990s and so the outcomes of some projects may not have been recorded electronically. Some of the projects used existing services, and may not have reached those most likely to not have undergone screening for DR. However some of the programs trialed mobile clinics and had very good response rates, suggesting that, provided the service is available, people will attend. The studies were inconsistent in reporting key findings, in particular, data on the number identified with DR who went on to receive appropriate after care was sparse (only reported in three of the projects). Future studies focused on whether persons with DR detected at screening, follow referral recommendations to receive care of specialists and improve the control and management of diabetes, would close a major knowledge gap.

This review has shown there have been many pilot and demonstration projects in Australia that confirm the effectiveness of retinal photography-based screening for DR, in both remote and urban settings.

DECLARATION OF INTEREST

The authors report no conflicts of interest. The authors alone are responsible for the writing and content of the paper.

The authors have no funding sources to declare.

REFERENCES

10. Larizza MF, Hodgson LA, Fenwick EK, et al. Feasibility of
12. Barry CJ, Constable IJ, McAllister IL, Kanagasingam Y.
16. Karagiannis A, Newland H. Mobile retinal photography. A
18. Jackson CL, Hirst L, de Jong IC, Smith N. Can Australian
19. Diabetic Retina Screen. Accessed August 20, 2013 from:
22. Investing in sight: strategic interventions to prevent vision
20. Development of a low cost “truly” small retinal
21. A project to train Aboriginal Health Workers to screen for
23. Schulze-Dobold C, Erginay A, Robert N, et al. ((RI)): five-
25. Backlund LB, Algvere PV, Rosenqvist U. New blindness in
27. Eye Health Working Group of the Australian Population
28. Kristinsen JKR. Diabetic retinopathy. Screening and
29. Liew G, Michaelides M, Bunce C. A comparison of the
causes of blindness certifications in England and Wales in
working age adults (16–64 years), 1999–2000 with 2009–
Working toward a portable tele-ophthalmic system for
use in maximum-security prisons: a pilot study. Telemed J
31. National framework for action to promote eye health
and prevent avoidable blindness and vision loss; 2005.
publishing.nsf/content/0640a20064fc3d35ca2575b4001e5644/$file/key5.pdf.
32. Kirkwood BJ, Coster DJ, Essex RW. Ophthalmic nurse
practitioner led diabetic retinopathy screening. Results of a
33. Developing a low cost high quality eye screening
au/en/outcomes/health-and-wellbeing/telehealth-for-
rural-eyecare.aspx.
34. Ting DSW, Tay-Kearney ML, Constable I. Retinal video
recording at different levels: a novel video-based imaging
technology for diabetic retinopathy screening. Eye 2013;27:
848–853.
35. Eye health awareness and education for diabetic indigen-
ous Australians in the Kimberley. Accessed July 2, 2013 from:
initiative-to-combat-eye-disease.htm.
37. Ting D5, Tay-Kearney ML, Kanagasingam Y. Light and
38. A project to train an eye screening health worker. Accessed
itemid=43.

© 2014 Informa Healthcare USA, Inc.